Subdifferential enlargements and continuity properties of the VU -decomposition in convex optimization

نویسندگان

  • Shuai Liu
  • Claudia Sagastizábal
  • Mikhail Solodov
چکیده

We review the concept of VU-decomposition of nonsmooth convex functions, which is closely related to the notion of partly smooth functions. As VU-decomposition depends on the subdifferential at the given point, the associated objects lack suitable continuity properties (because the subdifferential lacks them), which poses an additional challenge to the already difficult task of constructing superlinearly convergent algorithms for nonsmooth optimization. We thus introduce certain ε-VU-objects, based on an abstract enlargement of the subdifferential, which have better continuity properties. We note that the standard ε-sudifferential belongs to the introduced family of enlargements, but we argue that this is actually not the most appropriate choice from the algorithmic point of view. Specifically, strictly smaller enlargements are desirable, as well as enlargements tailored to specific structure of the function (when there is such structure). Various illustrative examples are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Proximal Average: Basic Theory

The recently introduced proximal average of two convex functions is a convex function with many useful properties. In this paper, we introduce and systematically study the proximal average for finitely many convex functions. The basic properties of the proximal average with respect to the standard convex-analytical notions (domain, Fenchel conjugate, subdifferential, proximal mapping, epi-conti...

متن کامل

An application of the bivariate inf-convolution formula to enlargements of monotone operators

Motivated by a classical result concerning the ε-subdifferential of the sum of two proper, convex and lower semicontinuous functions, we give in this paper a similar result for the enlargement of the sum of two maximal monotone operators defined on a Banach space. This is done by establishing a necessary and sufficient condition for a bivariate inf-convolution formula.

متن کامل

Characterization of Metric Regularity of Subdifferentials

We study regularity properties of the subdifferential of proper lower semicontinuous convex functions in Hilbert spaces. More precisely, we investigate the metric regularity and subregularity, the strong regularity and subregularity of such a subdifferential. We characterize each of these properties in terms of a growth condition involving the function.

متن کامل

Partial second-order subdifferentials of -prox-regular functions

Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2  functions. The class of prox-regular functions covers all convex functions, lower C2  functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...

متن کامل

Vector Optimization Problems and Generalized Vector Variational-Like Inequalities

In this paper, some properties of  pseudoinvex functions, defined by means of  limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality,  the Stampacchia vector variational-like inequality, and the  weak formulations of these two inequalities  defined by means of limiting subdifferential are studied. Moreover, some relationships  between the vector vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017